Benutzer-Werkzeuge

Webseiten-Werkzeuge


javagraticule3d:least-squares-adjustment:deformationanalysis

Deformationsanalyse

Das Ausgleichungsprogramm JAG3D erlaubt neben der reinen Netzausgleichung auch eine Kongruenzanalyse, bei der ein geometrischer Vergleich zweier Epochen durchgeführt wird. Auf der Basis von statistischen Tests soll im Zuge der Deformationsanalyse geprüft werden, ob ein Punkt oder eine Punktgruppe sich gegenüber eine Referenz verschoben hat. In der gegenwärtigen Literatur werden zwei Verfahren propagiert, die eine Analyse eines absoluten Überwachungsnetzes beschreiben (vgl. Jäger et al. 2005):

  • Koordinatenmethode und
  • Beobachtungsmethode.

Kongruenzmodell

Bei der Koordinatenmethode werden zunächst die Einzelepochen getrennt ausgewertet. Die anschließende Deformationsanalyse erfolgt auf der Basis der ausgeglichenen Koordinaten der Einzelepochenauswertung. Das zugrunde zulegende stochastische Modell basiert dabei auf den Varianz-Kovarianz-Matrizen der Einzelepochen. Interepochale Abhängigkeiten werden in diesem Modell vernachlässigt.

Auch bei der Beobachtungsmethode sollte zunächst die Einzelauswertung der Epochen vorausgehen. Im Rahmen dieser Auswertung ist das Beobachtungsmaterial der jeweiligen Epoche auf Fehlmessungen hin zu analysieren und das stochastische Modell festzulegen. Im Gegensatz zur Koordinatenmethode erfolgt in der Kongruenzanalyse nun eine gemeinsame Ausgleichung beider Epochen. Hierzu werden die Beobachtungen l1 und l2 beider Epochen in einem Ausgleichungsmodell zusammengeführt. Das stochastische Modell der gemeinsamen Ausgleichung leitet sich aus den a-priori Unsicherheiten der originären Beobachtungen der Einzelepochenauswertungen ab. Beim Zusammenführen beider Epochen auf der Basis der originären Beobachtungen entstehen interepochale Korrelationen, die bei der Auswertung berücksichtigt werden. JAG3D verarbeitet bei der Kongruenzanalyse die Beobachtungen der Epochen in einem Guß. Aus diesem Grund wird im Folgenden nur das Modell der Beobachtungsmethode näher beschrieben werden. Detaillierte Informationen zu den Modellen kann u.a. Pelzer (1971) oder Jäger und Drixler (1990) entnommen werden.

Das Ausgleichungsmodell der gemeinsamen Auswertung zweier Epochen im Gauß-Markov-Modell ergibt sich zu:

Eq: \mathbf{\begin{pmatrix}l_1\\l_2\end{pmatrix}+\begin{pmatrix}v_1\\v_2\end{pmatrix}=\begin{pmatrix}A_{R,1}&A_{O,1}&0\\A_{R,2}&0&A_{O,2}\end{pmatrix}\begin{pmatrix}x_R\\x_{O,1}\\x_{O,2}\end{pmatrix}}

Bei der gemeinsamen freien Ausgleichung der Epochen werden die als stabil angenommenen Referenzkoordinaten xR über alle Epochen als identische unbekannte Parameter geschätzt. Hierdurch wird ein einheitliches Datum zwischen den Einzelepochen erreicht. Die übrigen Objektpunkte werden hingegen mit xO,1 und xO,2 für jede Epoche getrennt ins Modell eingeführt.

Explizite Prüfung der Referenzpunkte

Bevor eine Analyse der Objektpunkt xO erfolgen kann, sind die als stabil angenommenen Referenzpunkte xR zunächst auf Invarianz zu prüfen. Für die explizite Suche nach veränderten Referenzpunkten ist das o.g. Gauß-Markov-Modell um den Deformationsanteil des zu prüfenden Referenzpunktes zu erweitert.

Eq: \mathbf{l+v=Ax+B_{R,j}\nabla_{R,j}

Die Größe der geschätzten j-ten Modellstörung R,j lässt sich wiederum auf Signifikanz mit den beiden bekannten Teststatistiken prüfen:

Eq: T_{prio,j} = \frac{\mathbf{\nabla_{R,j}^TQ_{\nabla\nabla_{R,j}}^{-1}\nabla_{R,j}}} {m\sigma_0^2} \sim F_{m,\infty}

und

Eq: T_{post,j} = \frac{\mathbf{\nabla_{R,j}^TQ_{\nabla\nabla_{R,j}}^{-1}\nabla_{R,j}}} {m\hat{\sigma'_j}^2} \sim F_{m,f-m}

Analog zum Ausreißertest ist die Nullhypothese - es liegt keine Veränderung im j-ten Referenzpunkt vor - zu verwerfen, wenn die Teststatistik Tj größer als das zugehörige Quantil der F-Verteilung ist.

Ableitung der Verschiebungsvektoren der Objektpunkte

Liegen keine instabilen Referenzpunkte mehr im Modell vor, wird die Größe der Punktverschiebung dk des k-ten Objektpunktes mittels der Formmatrix Fk = [0 … 0 … -Ik 0 … Ik 0 … 0]

Eq: \mathbf{d_k=F\begin{pmatrix} x_{O,1} \\ x_{O,2} \end{pmatrix}}

zusammen mit der zugehörigen Varianz-Kovarianz-Matrix bestimmt.

Eq: Q_{dd,k}=\mathbf{F\begin{pmatrix}Q_{x_{O,1}x_{O,1}}&Q_{x_{O,1}x_{O,2}}\\Q_{x_{O,2}x_{O,1}}&Q_{x_{O,2}x_{O,2}}\end{pmatrix}F^T}

Die Größe dieses Deformationsparametervektors dk lässen sich wiederum auf Signifikanz prüfen. Analog zum Referenzpunkttest lauten die beiden Teststatistiken:

Eq: T_{prio,k} = \frac{\mathbf{d_k^TQ_{dd_k}^{-1}d_k}} {m\sigma_0^2} \sim F_{m,\infty}

und

Eq: T_{post,k} = \frac{\mathbf{d_k^TQ_{dd_k}^{-1}d_k}} {m\hat{\sigma_0}^2} \sim F_{m,f-m}

Die detektierte Veränderung gilt wiederum als signifikant, wenn die Teststatistik Tj größer als das zugehörige Quantil der F-Verteilung ist.

javagraticule3d/least-squares-adjustment/deformationanalysis.txt · Zuletzt geändert: 30.04.2014 16:17 von Michael Loesler